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(57) ABSTRACT

An approach for two stage log normalization is provided. The
approach retrieves a message format and a plurality of param-
eters from one or more log files. The approach determines a
classification for one or more first sequence files, wherein the
one or more first sequence files includes the message format
from the one or more log files. The approach determines a
classification of error for the one or more first sequence files.
The approach determines whether there is a high confidence
in the classification of error for the one or more first sequence
files. The approach determines whether there is an improve-
ment in confidence in the classification of error from one or
more second sequence files, wherein the one or more second
sequence files includes the message format and the plurality
of parameters from the one or more log files.
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1
TWO STAGE LOG NORMALIZATION

BACKGROUND OF THE INVENTION

The present invention relates generally to problem diagno-
sis in software systems, and more particularly to two stage log
normalization for automatic noise removal and improved
machine learning.

Log files may be a rich source of information for problem
diagnosis in software systems. Log files may reveal problems
depending on a pattern of one or more messages being shown,
content of the one or more messages, or a combination of
both.

Machine learning may speed up the process of problem
diagnosis. Machine learning typically leverages training data
to be able to recognize and categorize important information
within the log files.

SUMMARY

Aspects of an embodiment of the present invention dis-
close a method, a computer system, and a computer program
product for two stage log normalization for automatic noise
removal and improved machine learning, in accordance with
an embodiment of the present invention. The method includes
retrieving, by one or more computer processors, a message
format and a plurality of parameters from one or more log
files. The method includes determining, by one or more com-
puter processors, a classification for one or more first
sequence files, wherein the one or more first sequence files
includes the message format from the one or more log files,
wherein determining includes creating the one or more first
sequence files, wherein creating includes retrieving a corre-
sponding unique message 1D for each of the one or more log
files, and utilizing conventional machine learning processes
to train data for the classification of the one or more first
sequence files. The method includes determining, by one or
more computer processors, a classification of error for the one
or more first sequence files, wherein determining includes
determining one or more similarities between the one or more
first sequence files and a plurality of existing trained data. The
method includes determining, by one or more computer pro-
cessors, whether there is a high confidence in the classifica-
tion of error for the one or more first sequence files, wherein
determining includes determining a level of similarity
between the classification of error for the one or more first
sequence files and a plurality of existing trained data. Respon-
sive to a determination that the level of similarity between the
classification of error for the one or more first sequence files
and the plurality of existing trained data is high, the method
includes determining, by one or more computer processors,
that there is a high confidence in the classification of error.
Responsive to a determination that the level of similarity
between the classification of error for the one or more first
sequence files and the plurality of existing trained data is low,
the method includes determining, by one or more computer
processors, that there is not a high confidence in the classifi-
cation of error. Responsive to a determination that there is not
a high confidence in the classification of error for the one or
more first sequence files, the method includes determining,
by one or more computer processors, whether there is an
improvement in confidence in the classification of error from
one or more second sequence files, wherein the one or more
second sequence files includes the message format and the
plurality of parameters from the one or more log files,
wherein determining includes creating the one or more sec-
ond sequence files, wherein creating includes retrieving a
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corresponding unique parameter ID for each of the one or
more log files and sequencing the unique message ID for each
of'the one or more log files with the respective unique param-
eter ID, re-classifying the one or more second sequence files,
wherein re-classifying includes determining a classification
of error for the one or more second sequence files, and deter-
mining a level of similarity between the classification of error
for the one or more second sequence files and a plurality of
existing trained data. Responsive to a determination that the
level of similarity between the classification of error for the
one or more second sequence files and the plurality of existing
trained data has improved over a level of similarity between a
classification of error for the one or more first sequence files
and the plurality of existing trained data, the method includes
determining, by one or more computer processors, there is an
improvement in confidence in the classification of error for
the one or more second sequence files. Responsive to a deter-
mination that the level of similarity between the classification
of error for the one or more second sequence files and the
plurality of existing trained data has not improved over a level
of similarity between a classification of error for the one or
more first sequence files and the plurality of existing trained
data, the method includes determining, by one or more com-
puter processors, there is not an improvement in confidence in
the classification of error for the one or more second sequence
files.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional block diagram illustrating a data
processing environment, in accordance with an embodiment
of the present invention.

FIG. 2 is a flowchart depicting operational steps of a nor-
malization program (such as the normalization program of
FIG. 1) for training a two stage log normalization system, in
accordance with an embodiment of the present invention.

FIG. 3 is a flowchart depicting operational steps of a nor-
malization program (such as the normalization program of
FIG. 1) for problem determination utilizing two stage log
normalization, in accordance with an embodiment of the
present invention.

FIG. 4 is a block diagram depicting components of a data
processing system (such as the server of FIG. 1), in accor-
dance with an embodiment of the present invention.

DETAILED DESCRIPTION

Implementation of embodiments of the present invention
may take a variety of forms, and exemplary implementation
details are discussed subsequently with reference to the Fig-
ures.

The present invention will now be described in detail with
reference to the Figures. FIG. 1 is a functional block diagram
illustrating a data processing environment, generally desig-
nated 100, in accordance with an embodiment of the present
invention. FIG. 1 provides only an illustration of one imple-
mentation and does not imply any limitations with regard to
the environments in which different embodiments may be
implemented. Many modifications to the depicted environ-
ment may be made by those skilled in the art without depart-
ing from the scope of the invention as recited by the claims.
FIG. 1 includes network 102, server 104, database 106, and
one or more client devices, such as client device 108 and
client device 110.

In one embodiment, network 102 is the Internet represent-
ing a worldwide collection of networks and gateways that use
TCP/IP protocols to communicate with one another. Network
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102 may include wire cables, wireless communication links,
fiber optic cables, routers, switches and/or firewalls. Server
104, database 106, client device 108 and client device 110 are
interconnected by network 102. Network 102 can be any
combination of connections and protocols capable of sup-
porting communications between server 104, database 106,
client device 108, client device 110, and normalization pro-
gram 112. Network 102 may also be implemented as a num-
ber of different types of networks, such as an intranet, a local
area network (LAN), a virtual local area network (VLLAN), or
awide area network (WAN). FIG. 1 is intended as an example
and not as an architectural limitation for the different embodi-
ments.

In one embodiment, server 104 may be, for example, a
server computer system such as a management server, a web
server, or any other electronic device or computing system
capable of sending and receiving data. In another embodi-
ment, server 104 may be a data center, consisting of a collec-
tion of networks and servers providing an IT service, such as
virtual servers and applications deployed on virtual servers,
to an external party. In another embodiment, server 104 rep-
resents a “cloud” of computers interconnected by one or more
networks, where server 104 is a computing system utilizing
clustered computers and components to act as a single pool of
seamless resources when accessed through network 102. This
is a common implementation for data centers in addition to
cloud computing applications. In the exemplary embodiment,
server 104 includes a normalization program 112 for two
stage log normalization for automatic noise removal and
improved machine learning.

In one embodiment, database 106 is a conventional data
storage repository for storing information (i.e., data). In one
embodiment, database 106 is capable of storing one or more
log files, a plurality of training data for problem diagnosis of
the one or more log files, and one or more log file classifica-
tions, etc. In another embodiment, database 106 may be a data
storage unit, such as a storage server, a redundant array of
inexpensive disks (RAID), a hard disk drive, a removable
media device (e.g., a compact disc), a random access memory
(RAM), a flash memory, a magnetic storage device, or any
other suitable data storage unit capable of storing informa-
tion.

In one embodiment, client device 108 and client device 110
are clients to server 104 and may be, for example, a desktop
computer, a laptop computer, a tablet computer, a personal
digital assistant (PDA), a smart phone, a thin client, or any
other electronic device or computing system capable of com-
municating with server 104 through network 102. For
example, client device 108 and client device 110 may be a
server computer and a laptop capable of connecting to a
network, such as network 102, to conduct problem diagnosis
in software systems utilizing a normalization program, such
as normalization program 112. In one embodiment, client
device 108 and client device 110 may be any suitable type of
mobile device capable of running mobile applications,
including a smart phone, tablet, slate, or any type of device
that runs a mobile operating system. In one embodiment,
client device 108 and client device 110 may include a user
interface (not shown) for providing an end user with the
capability to interact with a normalization program, such as
normalization program 112 to diagnosis problems in software
systems using normalized log files and conventional machine
learning capabilities known in the art. A user interface refers
to the information (such as graphic, text, and sound) a pro-
gram presents to a user and the control sequences the user
employs to control the program. There are many types of user
interfaces. In one embodiment, the user interface may be a
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graphical user interface (GUI). A GUI is a type of user inter-
face that allows users to interact with electronic devices, such
as a keyboard and mouse, through graphical icons and visual
indicators, such as secondary notations, as opposed to text-
based interfaces, typed command labels, or text navigation. In
computer, GUIs were introduced in reaction to the perceived
steep learning curve of command-line interfaces, which
required commands to be typed on the keyboard. The actions
in GUIs are often performed through direct manipulation of
the graphics elements.

In one embodiment, normalization program 112 is a soft-
ware-based component for two stage log normalization for
automatic noise removal and improved machine learning pro-
cesses in problem diagnosis. In one embodiment, normaliza-
tion program 112 performs a first stage log normalization on
one or more log files, extracting message formats without
message parameters from the one or more log files without
referencing source code or binaries. For example, when per-
forming a first stage normalization on the one or more log
files, normalization program 112 calculates a hash of a string,
such as “Test machine: %1$s”, which is a message format.
Normalization program 112 saves each extracted message
format into a data store, such as database 106, and determines
a unique message ID (i.e., a positive number) for each
extracted message format, where the unique message 1D may
be determined by incrementing, for example, the largest mes-
sage ID by one. For example, normalization program 112
may save one or more extracted message formats with respec-
tive unique message IDs, such as “1 Test machine: %18$s, 2
Starting machine: %18$s at time %2$s, 3 Log into %18$s using
username %28$s and password %3$s”, in a data store, such as
database 106. In one embodiment, normalization program
112 saves a message format to a data store, such as database
106, when the message format does not already exist in the
data store. In one embodiment, normalization program 112
generates a sequence of messages without parameters. For
example, where a sequence of a log file contains a first mes-
sage, then a second message, then a third message, then back
to the first message, and finally back to the third message,
normalization program 112 may generate a sequence of mes-
sages “1, 2,3, 1, 3”. In one embodiment, normalization pro-
gram 112 utilizes a sequence of messages in machine learning
processes to classify log files.

In one embodiment, normalization program 112 performs
a second stage log normalization on the one or more log files,
extracting message parameters from the one or more log files
and relates the message parameters to the first stage normal-
ization message formats without referencing source code or
binaries. For example, when performing a second stage nor-
malization on the one or more log files, normalization pro-
gram 112 calculates a hash of a string, such as
“10.10.20.200”, which is a parameter format. Normalization
program 112 saves each extracted parameter format into a
data store, such as database 106, and determines a unique
parameter ID (i.e., a negative number) for each extracted
parameter format, where the unique parameter ID may be
determined by decrementing, for example, the smallest
parameter ID by one. For example, normalization program
112 may save one or more extracted parameter formats with
respective unique parameter 1Ds, such as “~1 10.10.20.200,
-2 1399345022864, -3 root, —4 password”, in a data store,
such as database 106. In one embodiment, normalization
program 112 saves a parameter format to a data store, such as
database 106, when the parameter format does not already
exist in the data store. In one embodiment, normalization
program 112 generates a sequence of parameters that may be
added to the end of a log file. For example, where a sequence
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of a log file contains a first message with a first parameter,
then a second message with the first parameter and a second
parameter, then a third message with the first parameter, a
third parameter, and a fourth parameter, normalization pro-
gram 112 may generate asequence “1,-1,2,-1,-2,3,-1, -3,
-4”. In one embodiment, normalization program 112 utilizes
a sequence of messages and parameters in machine learning
processes to classify log files.

FIG. 2 is a flowchart depicting operational steps of a nor-
malization program (such as the normalization program of
FIG. 1), generally designated 200, for training a two stage log
normalization system, in accordance with an embodiment of
the present invention.

Normalization program 112 retrieves a message format
and parameters from one or more log files (202). In one
embodiment, normalization program 112 retrieves a message
format and parameters from the one or more log files by
extracting one or more message formats and one or more
parameter formats from one or more log files (i.e., entries)
using, for example, an extensible markup language (XML)
parser, a log data mining tool, reverse look-up of resource
files, or any other suitable methods of extracting data from log
files.

Normalization program 112 creates one or more first
sequence files (204). In one embodiment, normalization pro-
gram 112 creates one or more first sequence files by retrieving
a corresponding unique message 1D for each of the one or
more log files from, for example, a data store, such as data-
base 106. In one embodiment, normalization program 112
creates a first sequence file containing only a sequence of the
unique message 1D for each of the one or more log files.

Normalization program 112 determines a classification for
each of the one or more first sequence files (206). In one
embodiment, normalization program 112 determines a clas-
sification for each of the one or more first sequence files by
utilizing conventional machine learning processes known in
the art, such as a support vector machine, to train the two stage
log normalization system. In one embodiment, normalization
program 112 saves the classification for each of the one or
more first sequence files in a data store, such as database 106,
for future reference with respect to, for example, system
training and problem diagnosis.

Normalization program 112 determines one or more simi-
lar classifications (208). In one embodiment, normalization
program 112 determines one or more similar classifications
between each of the one or more first sequence files by deter-
mining where a pattern of unique message ID’s between each
of the one or more first sequence files are similar.

Normalization program 112 creates one or more second
sequence files (210). In one embodiment, normalization pro-
gram 112 creates one or more second sequence files by
retrieving a corresponding unique parameter 1D for each of
the one or more log files from a data store, such as database
106. In one embodiment, normalization program 112 creates
the one or more second sequence files by sequencing the
unique message 1Ds with their respective unique parameter
IDs. In one embodiment, normalization program 112 creates
a second sequence file containing a sequence of the unique
message [Ds and a sequence of the unique parameter IDs for
each of the one or more log files.

Normalization program 112 determines a classification for
each of the one or more second sequence files (212). In one
embodiment, normalization program 112 determines a clas-
sification for each of the one or more second sequence files by
utilizing conventional machine learning processes known in
the art, such as a support vector machine, to further classify
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the one or more log files based on the unique message IDs and
unique parameter 1Ds (i.e., the one or more second sequence
files).

FIG. 3 is a flowchart depicting operational steps of a nor-
malization program (such as the normalization program of
FIG. 1), generally designated 300, for problem determination
utilizing two stage log normalization, in accordance with an
embodiment of the present invention.

Normalization program 112 detects a problem in one or
more log files (302). In one embodiment, normalization pro-
gram 112 detects a problem in one or more log files by
receiving an error notification from a client device, such as
client device 108 and client device 110. In another embodi-
ment, normalization program 112 may detect a problem in
one or more log files via an error notification from a software
system.

Normalization program 112 retrieves message format and
parameters from the one or more log files (304). In one
embodiment, normalization program 112 retrieves message
format and parameters from the one or more log files of a
client device, such as client device 108 and client device 110,
where the one or more log files are collected and merged
based, at least in part, on a time stamp. In one embodiment,
normalization program 112 retrieves a message format and
parameters from the one or more log files by extracting one or
more message formats and one or more parameter formats
from one or more log files (i.e., entries) using, for example, an
extensible markup language (XML) parser, a log data mining
tool, reverse look-up of resource files, or any other suitable
methods of extracting data from log files.

Normalization program 112 creates one or more first
sequence files (306). In one embodiment, normalization pro-
gram 112 creates one or more first sequence files by retrieving
a corresponding unique message 1D for each of the one or
more log files from, for example, a data store, such as data-
base 106. In one embodiment, normalization program 112
creates a first sequence file containing only a sequence of the
unique message 1D for each of the one or more log files.

Normalization program 112 determines a classification of
error for each of the one or more first sequence files (308). In
one embodiment, normalization program 112 determines a
classification of error for each of the one or more first
sequence files based, at least in part, on existing trained data
stored in a data store, such as database 106. In some embodi-
ments, the existing trained data is generated according to
operational steps discussed in reference to FIG. 2. In one
embodiment, normalization program 112 determines a clas-
sification of error (i.e., a classification of an error condition)
by determining similarities between the one or more first
sequence files and existing trained data. In some embodi-
ments, normalization program 112 returns classification of
error results to a tester or developer that may desire to further
examine the one or more log files.

Normalization program 112 determines whether there is a
high confidence in the classification of error results (310). In
one embodiment, normalization program 112 determines
whether there is a high confidence in the classification of error
results by determining a level of similarity between the clas-
sification of error and the existing trained data. Where nor-
malization program 112 determines that a level of similarity
between the classification of error and the existing trained
data is high, normalization program 112 determines there is a
high confidence in the results (i.e., the results are accurate).
For example, normalization program 112 may determine that
alevel of similarity between the classification of error and the
existing trained data is high where the level of similarity is
greater than fifty percent, or where the level of similarity
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exceeds a pre-defined similarity threshold. Where normaliza-
tion program 112 determines that a level of similarity
between the classification of error and the existing trained
data is low, normalization program 112 determines there is
not a high confidence in the classification of error results (i.e.,
the results are not accurate). For example, normalization pro-
gram 112 may determine that a level of similarity between the
classification of error and the existing trained data is low
where the level of similarity is less than fifty percent, or where
the level of similarity fails to exceed a pre-defined similarity
threshold.

Responsive to a determination that there is a high confi-
dence in the classification of error results (YES branch, 310),
normalization program 112 reports the results (312). In one
embodiment, normalization program 112 may report the clas-
sification of error results to a tester or developer through a
display, a user interface, a print out, a table, or any other
suitable means of providing results.

Responsive to a determination that there is not a high
confidence in the classification of error results (NO branch,
310), normalization program 112 creates one or more second
sequence files (314). In one embodiment, normalization pro-
gram 112 creates one or more second sequence files by
retrieving a corresponding unique parameter 1D for each of
the one or more log files from a data store, such as database
106. In one embodiment, normalization program 112 creates
the one or more second sequence files by sequencing the
unique message 1Ds with their respective unique parameter
IDs. In one embodiment, normalization program 112 creates
a second sequence file containing a sequence of the unique
message [Ds and a sequence of the unique parameter IDs for
each of the one or more log files.

Normalization program 112 determines whether there is an
improvement in confidence in the classification of error
results (316). In one embodiment, normalization program
112 determines whether there is an improvement in the con-
fidence in the classification of error results by re-classifying
the one or more second sequence files and determining a level
of similarity between the classification of error for the one or
more second sequence files and the trained data. Where nor-
malization program 112 determines that a level of similarity
between the classification of error for the one or more second
sequence files and the trained data has improved over the level
of similarity between the classification of error for the one or
more first sequence files and the trained data, normalization
program 112 determines there is an improvement in confi-
dence in the classification of error results (i.e., the results are
accurate). Where normalization program 112 determines that
a level of similarity between the classification of error for the
one or more second sequence files and the trained data has not
improved over the level of similarity between the classifica-
tion of error for the one or more first sequence files, normal-
ization program 112 determines there is not an improvement
in confidence in the classification of error results (i.e., the
results are not accurate).

Responsive to a determination that there is an improvement
in confidence in the classification of error results (YES
branch, 316), normalization program 112 reports the results
(312).

Responsive to a determination that there is not an improve-
ment in confidence in the classification of error results (NO
branch, 316), normalization program 112 reports confidence
is not high (318). In one embodiment, normalization program
112 reports confidence is not high by notifying a tester or
developer that the classification for error results are inconclu-
sive.
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FIG. 4 depicts a block diagram of components of a data
processing system, such as server 104 of FIG. 1, generally
designated 400, in accordance with an illustrative embodi-
ment of the present invention. It should be appreciated that
FIG. 4 provides only an illustration of one implementation
and does not imply any limitations with regard to the envi-
ronments in that different embodiments may be implemented.
Many modifications to the depicted environment may be
made.

In the illustrative embodiment, server 104 in data process-
ing environment 100 is shown in the form of a general-
purpose computing device, such as computer system 410. The
components of computer system 410 may include, but are not
limited to, one or more processors or processing unit 414,
memory 424, and bus 416 that couples various system com-
ponents including memory 424 to processing unit(s) 414.

Bus 416 represents one or more of any of several types of
bus structures, including a memory bus or memory controller,
aperipheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus.

Computer system 410 typically includes a variety of com-
puter system readable media. Such media may be any avail-
able media that is accessible by computer system 410, and it
includes both volatile and non-volatile media, removable and
non-removable media.

Memory 424 can include computer system readable media
in the form of volatile memory, such as random access
memory (RAM) 426 and/or cache memory 428. Computer
system 410 may further include other removable/non-remov-
able, volatile/non-volatile computer system storage media.
By way of example only, storage system 430 can be provided
forreading from and writing to a non-removable, non-volatile
magnetic media (not shown and typically called a “hard
drive”). Although not shown, a magnetic disk drive for read-
ing from and writing to a removable, non-volatile magnetic
disk (e.g., a “floppy disk”), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM, or other optical media
can be provided. In such instances, each can be connected to
bus 416 by one or more data media interfaces. As will be
further depicted and described below, memory 424 may
include at least one computer program product having a set
(e.g., at least one) of program modules that are configured to
carry out the functions of embodiments of the invention.

Program/utility 432, having one or more sets of program
modules 434, may be stored in memory 424 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating systems, one or more
application programs, other program modules, and program
data, or some combination thereof, may include an imple-
mentation of a networking environment. Program modules
434 generally carry out the functions and/or methodologies of
embodiments of the invention as described herein. Computer
system 410 may also communicate with one or more external
device(s) 412, such as akeyboard, a pointing device, a display
422, etc., or one or more devices that enable a user to interact
with computer system 410 and any devices (e.g., network
card, modem, etc.) that enable computer system 410 to com-
municate with one or more other computing devices. Such
communication can occur via Input/Output (I/0) interface(s)
420. Still yet, computer system 410 can communicate with
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one or more networks, such as a local area network (LAN), a
general wide area network (WAN), and/or a public network
(e.g., the Internet) via network adapter 418. As depicted,
network adapter 418 communicates with the other compo-
nents of computer system 410 via bus 416. It should be
understood that although not shown, other hardware and soft-
ware components, such as microcode, device drivers, redun-
dant processing units, external disk drive arrays, RAID sys-
tems, tape drives, and data archival storage systems may be
used in conjunction with computer system 410.

The present invention may be a system, a method, and/or a
computer program product. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present inven-
tion.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an elec-
tronic storage device, a magnetic storage device, an optical
storage device, an electromagnetic storage device, a semicon-
ductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler instruc-
tions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++, or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The computer readable program instructions
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
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the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider). In
some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be pro-
vided to a processor of a general purpose computer, a special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein com-
prises an article of manufacture including instructions which
implement aspects of the function/act specified in the flow-
chart and/or block diagram block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer implemented
process, such that the instructions which execute on the com-
puter, other programmable apparatus, or other device imple-
ment the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more execut-
able instructions for implementing the specified logical func-
tion(s). In some alternative implementations, the functions
noted in the block may occur out of the order noted in the
Figures. For example, two blocks shown in succession may,
in fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of'the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts or carry out combinations of special purpose hardware
and computer instructions.
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The descriptions ofthe various embodiments of the present
invention have been presented for purposes of illustration, but
are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the invention. The terminology
used herein was chosen to best explain the principles of the
embodiment, the practical application or technical improve-
ment over technologies found in the marketplace, or to enable
others of ordinary skill in the art to understand the embodi-
ments disclosed herein.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. It should be appreciated that any
particular nomenclature herein is used merely for conve-
nience and thus, the invention should not be limited to use
solely in any specific function identified and/or implied by
such nomenclature. Furthermore, as used herein, the singular
forms of “a”, “an”, and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise.

What is claimed is:

1. A method for two stage log normalization, the method
comprising:

retrieving, by one or more computer processors, a message

format and a plurality of parameters from one or more
log files;

determining, by one or more computer processors, a clas-

sification for one or more first sequence files, wherein
the one or more first sequence files includes the message
format from the one or more log files, wherein determin-
ing includes creating the one or more first sequence files,
wherein creating includes retrieving a corresponding
unique message identifier (ID) for each of the one or
more log files, and utilizing conventional machine learn-
ing processes to train data for the classification of the one
or more first sequence files;

determining, by one or more computer processors, a clas-

sification of error for the one or more first sequence files
by determining one or more similarities between the one
or more first sequence files and a plurality of existing
trained data;

determining, by one or more computer processors, whether

there is a high confidence in the classification of error for
the one or more first sequence files by determining a
level of similarity between the classification of error for
the one or more first sequence files and the plurality of
existing trained data;

responsive to a determination that the level of similarity

between the classification of error for the one or more
first sequence files and the plurality of existing trained
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data is high, determining, by one or more computer
processors, that there is a high confidence in the classi-
fication of error;

responsive to a determination that the level of similarity
between the classification of error for the one or more
first sequence files and the plurality of existing trained
data is

low, determining, by one or more computer processors,
that there is not a high confidence in the classification of
error;

responsive to a determination that there is not a high con-
fidence in the classification of error for the one or more
first sequence files, determining, by one or more com-
puter processors, whether there is an improvement in
confidence in the classification of error from one or more
second sequence files, wherein the one or more second
sequence files includes the message format and the plu-
rality of parameters from the one or more log files,
wherein determining the improvement includes creating
the one or more second sequence files, wherein creating
includes retrieving a corresponding unique parameter
ID for each of the one or more log files and sequencing
the unique message ID for each of the one or more log
files with the respective unique parameter ID, re-classi-
fying the one or more second sequence files, wherein
re-classifying includes determining a classification of
error for the one or more second sequence files, and
determining a level of similarity between the classifica-
tion of error for the one or more second sequence files
and the plurality of existing trained data;

responsive to a determination that the level of similarity
between the classification of error for the one or more
second sequence files and the plurality of existing
trained data has improved over a level of similarity
between a classification of error for the one or more first
sequence files and the plurality of existing trained data,
determining, by one or more computer processors, there
is an improvement in confidence in the classification of
error for the one or more second sequence files; and

responsive to a determination that the level of similarity
between the classification of error for the one or more
second sequence files and the plurality of existing
trained data has not improved over a level of similarity
between a classification of error for the one or more first
sequence files and the plurality of existing trained data,
determining, by one or more computer processors, there
is not an improvement in confidence in the classification
of error for the one or more second sequence files.
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